Skip Navigation or Skip to Content

Grants

Career Development Award for Elizabeth Torres, Ph.D.

Natural behaviors flow continuously. They are dynamically composed of movements with different levels of intent, ranging from deliberately controlled motions to motions that spontaneously occur largely beneath our conscious awareness. The signatures of motor output variability from these movement classes carry an ever-changing blend of noise and signal that informs the central nervous system of critical changes at the periphery. They help discriminate sensory changes of relevance to the biological organism. The modulation and control of this efferent output flow depends on the returning afferent stream, which such motions themselves cause.

Although physical movements have been exclusively treated as efferent output in autism, they also constitute a form of sensory input that can be measured at the periphery in non-invasive ways. The returning afferent information can thus be precisely parameterized in a controlled manner and paired with other forms of sensory feedback to augment the sensory bubble of the autistic system. In this way, there is a higher probability of inducing perceptual stability along some sensory modality so as to create proper anchors or frames of reference to scaffold the type of sensory-motor integration processes that enable predicting ahead, in a causal manner, the sensory consequences of impending actions. In turn such feedback can be used to make the system cognizant of its own spontaneous actions and intentions, and of the spontaneous actions and the intentions of others in the social environment.

Recent work from Dr. Torres’ laboratory has taken the first steps towards this paradigm shifting approach to movement in autism. They have invented a new statistical platform for individualized behavioral analyses (SPIBA). This platform helps close the feedback loops in autism, to detect real-time changes in the internal somatosensation of the child as a function of external sensory guidance. SPIBA combined with physical body micro-movements that are hidden to the conscious human eye has helped shift the stochastic regimes of the autistic system from random and noisy to predictive and reliable, thus broadening the bandwidth of their peripheral motor-sensory signal. Even in 25 non-verbal children with ASD Dr. Torres’ team was able to systematically evoke volitional control of their actions and enhance intentionality in their spontaneous gestures, according to the shifts in the stochastic signatures of their motor output variability, the rate of which was unique to each child.

This project combined SPIBA, the new conceptual framework for motor control and wearable sensing technology to open a window into the hidden communicative capacities of the autistic system. Torres’ lab combined movement-based peripheral sensory feedback with precisely parameterized external sensory input to engage the autistic child in the intentional control of actions and decisions. The impact of the peripheral signal on centrally driven decisions was also assessed.